
1

Erlang at Facebook

Eugene Letuchy

Apr 30, 2009

2

1 Facebook ... and Erlang

2 Story of Facebook Chat

3 Facebook Chat Architecture

4 Key Erlang Features

5 Then and Now

Agenda

3

Facebook ... and Erlang

4

The Facebook Environment

▪ The Site

▪ More than 200 million active users
▪ More than 3.5 billion minutes are spent on Facebook each day
▪ Fewer than 900 employees

▪ The Engineering Team

▪ Fast iteration: code gets out to production within a week
▪ Polyglot programming: interoperability is key
▪ Practical: high-leverage tools win

5

Erlang Projects

▪ Chat: the biggest and best known user

▪ AIM Presence: a JSONP validator

▪ Chat Jabber support (ejabberd)

6

Facebook Chat

7

2007: Facebook needs Chat
Messages, Wall, Links aren’t enough

8

Enter a Hackathon (Jan 2007)

▪ Chat started in one night of coding

▪ Floating conversation windows

▪ No buddy list

▪ One server (no distribution)

▪ Erlang was there!

9

Enter Eugene (Feb 2007)
▪ I joined Facebook after Chat Hackathon

▪ What is this Erlang?

▪ Spring 2007:

▪ Learning Erlang from Joe Armstrong's thesis
▪ Lots of prototyping
▪ Evaluating infrastructure needs

▪ Summer 2007:

▪ Chris Piro works on Erlang Thrift bindings

10

Let’s do this!

▪ Mid-Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

▪ Infrastructure components get built and improved

▪ Feb 2008: “Dark launch” testing begins

▪ Simulates load on the Erlang servers ... they hold up

▪ Apr 6, 2008: First real Chat message sent

▪ Apr 23, 2008: 100% rollout (Facebook has 70M users at the time)

11

Launch: April 2008

▪ Apr 6, 2008: gradual live rollout starts

▪ First message: "msn chat?"

▪ Apr 23, 2008: 100% rollout (to Facebook’s 70M users)

▪ Graph of sends in the first days of launch

0

3

6

9

12

15

Tue 00:00 12:00 Wed 00:00 12:00

millions of sends per hour

12

Chat ... one year later

▪ Facebook has 200M active users

▪ 800+ million user messages / day

▪ 7+ million active channels at peak

▪ 1GB+ in / sec at peak

▪ 100+ channel machines

▪ ~9-10 times the work at launch;

~2 as many machines

13

Chat Architecture

14

System challenges

▪ How does synchronous messaging work on the Web?

▪ “Presence” is hard to scale

▪ Need a system to queue and deliver messages

▪ Millions of connections, mostly idle

▪ Need logging, at least between page loads

▪ Make it work in Facebook’s environment

15

System overview

16

System overview - User Interface
Chat in the browser?

▪ Chat bar affixed to the bottom of each Facebook page

▪ Mix of client-side Javascript and server-side PHP

▪ Works around transport errors, browser differences

▪ Regular AJAX for sending messages, fetching conversation history

▪ Periodic AJAX polling for list of online friends

▪ AJAX long-polling for messages (Comet)

17

System Overview - Back End
How does the back end service requests?

▪ Discrete responsibilities for each service

▪ Communicate via Thrift

▪ Channel (Erlang): message queuing and delivery

▪ Queue messages in each user’s “channel”

▪ Deliver messages as responses to long-polling HTTP requests

▪ Presence (C++): aggregates online info in memory (pull-based presence)

▪ Chatlogger (C++): stores conversations between page loads

▪ Web tier (PHP): serves our vanilla web requests

18

System overview

19

Message send

Me:
Lunch?

Eugene:
Lunch?

1 - ajax

2a - thrift

2b - thrift

3 - long poll

20

Channel servers (Erlang)

21

Channel servers
Architectural overview

▪ One channel per user

▪ Web tier delivers messages for that user

▪ Channel State: short queue of sequenced messages

▪ Long poll for streaming (Comet)

▪ Clients make an HTTP request

▪ Server replies when a message is ready

▪ One active request per browser tab

22

channel application

messages
authentication

online list messages

23

Channel servers
Architectural details

▪ Distributed design

▪ User id space is partitioned (division of labor)

▪ Each partition is serviced by a cluster (availability)

▪ Presence aggregation

▪ Channel servers are authoritative

▪ Periodically shipped to presence servers

▪ Open source: Erlang, Mochiweb, Thrift, Scribe, fb303, et al.

24

Key Erlang Features we love

25

Concurrency

▪ Cheap parallelism at massive scale

▪ Simplifies modeling concurrent interactions

▪ Chat users are independent and concurrent
▪ Mapping onto traditional OS threads is unnatural

▪ Locality of reference

▪ Bonus: carries over to non-Erlang concurrent programming

26

Distribution

▪ Connected network of nodes

▪ Remote processes look like local processes

▪ Any node in a channel server cluster can route requests
▪ Naive load balancing

▪ Distributed Erlang works out-of-the-box (all nodes are trusted)

27

Fault Isolation

▪ Bugs in the initial versions of Chat:

▪ Process leaks in the Thrift bindings
▪ Unintended multicasting of messages
▪ Bad return state for presence aggregators

▪ (Horrible) bugs don’t kill a mostly functional system:

▪ C/C++ segfault takes down the OS process and your server state
▪ Erlang badmatch takes down an Erlang process

▪ ... and notifies linked processes

28

Error logging (Crash Reports)
▪ Any proc_lib-compliant process generates crash reports

▪ Error reports can be handled out of band (not where generated)

▪ Stacktraces point the way to bugs (functional languages win big here)

▪ ... but they could be improved with source line numbers

▪ Writing error_log handlers is simple:

▪ gen_event behavior
▪ Allows for massaging of the crash and error messages (binaries!)
▪ Thrift client in the error log

▪ WARNING: error logging can OOM the Erlang node

29

Hot code swapping

▪ Restart-free upgrades are awesome (!)

▪ Pushing new functional code for Chat takes ~20 seconds
▪ No state is lost

▪ Test on a running system

▪ Provides a safety net ... rolling back bad code is easy

▪ NOTE: we don’t use the OTP release/upgrade strategies

30

Monitoring and Error Recovery
▪ Supervision hierarchies

▪ Organize (and control) processes
▪ Organize thoughts
▪ Systematize restarts and error recovery
▪ simple_one_for_one for dynamic child processes

▪ net_kernel (Distributed Erlang)

▪ sends nodedown, nodeup messages
▪ any process can subscribe

▪ heart: monitors and restarts the OS process

31

Remote Shell
▪ To invoke:

> erl -name hidden -hidden -remsh <node_name> -setcookie <cookie>
Eshell V5.7.1 (abort with ^G)
(<node_name>)1>

▪ Ad-hoc inspection of a running node

▪ Command-and-control from a console

▪ Combines with hot code loading

32

Erlang top (etop)

▪ Shows Erlang processes, sorted by
reductions, memory and message
queue

▪ OS functionality ... for free

33

Hibernation
▪ Drastically shrink memory usage with erlang:hibernate/3

▪ Throws away the call stack
▪ Minimizes the heap
▪ Enters a wait state for new messages
▪ “Jumps” into a passed-in function for a received message

▪ Perfect for a long-running, idling HTTP request handler

▪ But ... not compatible with gen_server:call (and gen_server:reply)

▪ gen_server:call has its own receive() loop
▪ hibernate() doesn’t support have an explicit timeout
▪ Fixed with a few hours and a look at gen.erl

34

Symmetric MultiProcessing (SMP)
▪ Take advantage of multi-core servers

▪ erl -smp runs multiple scheduler threads inside the node

▪ SMP is emphasized in recent Erlang development

▪ Added to Erlang R11B
▪ Erlang R12B-0 through R13B include fixes and perf boosts

▪ Smart people have been optimizing our code for a year (!)

▪ Upgraded to R13B last night with about 1/3 less load

35

hipe_bifs
Cheating single assignment

▪ Erlang is opinionated:

▪ Destructive assignment is hard because it should be

▪ hipe_bifs:bytearray_update() allows for destructive array assignment

▪ Necessary for aggregating Chat users’ presence
▪ Don’t tell anyone!

36

Then and now Erlang in Progress

37

Then ... a steep learning curve

▪ Start of 2007:

▪ Few industry-focused English-language resources
▪ Few blogs (outside of Yariv’s and Joel Reymont’s)
▪ Code examples spread out and disorganized
▪ U.S. Erlang community limited in number and visibility

38

Now ...

▪ Programming Erlang (Jun 2007)

▪ Erlang Programming (upcoming...)

▪ More blogs and blog aggregators:

▪ Planet Erlang, Planet TrapExit

▪ Erlang Factory aggregates Erlang developments

▪ More code available:

▪ GitHub, CEAN
▪ More general-purpose Open Source Libraries

▪ U.S. -located conference and ErlLounges

39

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

40

